Publikationen

Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies. Z. Naturforsch., B: J. Chem. Sci. 2023, 78, 223–244.
CalcOPP: a program for the calculation of one-particle potentials (OPPs). Z. Kristallogr. – Cryst. Mater. 2022, 237, 85–92.
Synthesis and Doping Strategies to Improve the Photoelectrochemical Water Oxidation Activity of BiVO₄ Photoanodes. Z. Phys. Chem. 2020, 234, 655–682.
Synthesis, characterization, and crystal structure of aquabis(4,4′-dimethoxy-2,2′-bipyridine)[μ-(2𝘙,3𝘙)-tartrato(4−)]dicopper(II) octahydrate. Acta Crystallogr., Sect. E: Crystallogr. Commun. 2019, 75, 972–975.
CᴀʟᴄOPP: A Program for the Calculation of One-Particle Potentials. CalcOPP, A Program for the Calculation of One-Particle Potentials, Technische Universität Berlin, Berlin (Germany), 2019.
Commensurate Nb₂Zr₅O₁₅: Accessible Within the Field Nb₂ZrₓO₂ₓ₊₅ After All. ChemistryOpen 2019, 8, 447–450.
The inverse perovskite BaLiF₃: single-crystal neutron diffraction and analyses of potential ion pathways. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2018, 74, 643–650.
At the Gates: The Tantalum-Rich Phase Hf₃Ta₂O₁₁ and its Commensurately Modulated Structure. Inorg. Chem. 2018, 57, 14435–14442.
Diffusion Pathways and Activation Energies in Crystalline Lithium-Ion Conductors. Z. Phys. Chem. 2017, 231, 1279–1302.
HP-MoO₂: A High-Pressure Polymorph of Molybdenum Dioxide. Inorg. Chem. 2017, 56, 2321–2327.
Lithium Diffusion Pathways in 3R-LiₓTiS₂: A Combined Neutron Diffraction and Computational Study. J. Phys. Chem. C 2015, 119, 11370–11381.
LiBi₃S₅—A lithium bismuth sulfide with strong cation disorder. J. Solid State Chem. 2016, 238, 60–67.
Single-crystal neutron diffraction on γ-LiAlO₂: structure determination and estimation of lithium diffusion pathway. Z. Krist. – Cryst. Mater. 2016, 231, 189–193.
Unravelling Ultraslow Lithium-Ion Diffusion in γ-LiAlO₂: Experiments with Tracers, Neutrons, and Charge Carriers. Chem. Mater. 2016, 28, 915–924.
Controlled ligand distortion and its consequences for structure, symmetry, conformation and spin-state preferences of iron(II) complexes. Dalton Trans. 2015, 44, 19232–19247.
Spin-state dynamics of a photochromic iron(II) complex and its immobilization on oxide surfaces via phenol anchors. J. Coord. Chem. 2015, 68, 3099–3115.
Ternary transition-metal fluoride precursors for the fluorolytic sol–gel route: new insights into speciation and decomposition. Dalton Trans. 2015, 44, 13272–13281.
Thiocyanate Anchors for Salt-like Iron(II) Complexes on Au(111): Promises and Caveats. Z. Naturforsch., B: J. Chem. Sci. 2014, 69, 1164–1180.
(𝘖𝘊-6-13)-Difluoridooxidobis(propan-2-ol)(propan-2-olato)vanadium(V). Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2013, 69, 1482–1484.
Aus Null mach Eins – Schaltbare Komplexe neuartiger pyridinbasierter Podanden. Dissertation, Technische Universität Berlin (Deutschland) 2013.
Iron(II) Complexes of Two Amine/Imine N₅ Chelate Ligands Containing a 1,4-Diazepane Core – To Crossover or Not To Crossover. Eur. J. Inorg. Chem. 2013, 958–967.
Spin Crossover in a Vacuum-Deposited Submonolayer of a Molecular Iron(II) Complex. J. Phys. Chem. Lett. 2012, 3, 3431–3434.
Synthesis of ternary transition metal fluorides Li₃MF₆ 𝘷𝘪𝘢 a sol–gel route as candidates for cathode materials in lithium-ion batteries. J. Mater. Chem. 2012, 22, 15819–15827.
Copper Complexes of “Superpodal” Amine Ligands and Reactivity Studies towards Dioxygen. Eur. J. Inorg. Chem. 2012, 3000–3013.
Copper Complexes of “Superpodal” Amine Ligands and Reactivity Studies towards Dioxygen. Tetrahedron Lett. 2012, 53, 54–55.
First-row transition metal complexes of a novel pentadentate amine/imine ligand containing a hexahydropyrimidine core. Inorg. Chim. Acta 2011, 374, 514–520.
Bond Activation in Iron(II) and Nickel(II) Complexes of Polypodal Phosphanes. Z. Naturforsch., B: J. Chem. Sci. 2010, 65, 238–250.
Substituted Bisphosphanylamines as Ligands in Gold(I) Chemistry – Synthesis and Structures. Z. Anorg. Allg. Chem. 2009, 635, 125–129.