Supporting Information for

Controlled ligand distortion and its consequences for structure, symmetry, conformation and spin-state preferences of iron(II) complexes

Nicole Kroll, Kolja Theilacker, Marc Schoknecht, Dirk Baabe, Dennis Wiedemann, Martin Kaupp,

Andreas Grohmann and Gerald Hörner

Technische Universität Berlin, Institut für Chemie, Straße des 17. Juni 135, 10623 Berlin, Germany.

Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30,

38106 Braunschweig, Germany.

Crystallographic data	S2
Tabulated structure data (XRD and DFT)	S 3
Tabulated Mössbauer data	85
Additional figures	S 6

	[1 (OTf)](OTf)	[1(CH ₃ CN)](BPh ₄) ₂	[NiL ¹ (ClO ₄)] (ClO ₄) · MeOH	[2 (OTf)](OTf) · CH ₂ Cl ₂	$[2(\text{Cl})](\text{PF}_6) \cdot \frac{1}{4} \text{Et}_2\text{O}$	[NiL2(H2O)] $(ClO4)2 · MeOH$
CCDC No.	1008834	1008833	1008832	1008835	1008836	1008837
Radiation	Mo- K_{α} ($\lambda = 0.71073$ Å)	Cu- K_{α} ($\lambda = 1.54184$ Å)	Mo- K_{α} ($\lambda = 0.71073$ Å)	Cu- K_{α} ($\lambda = 1.54184$ Å)	Mo- K_{α} ($\lambda = 0.71073$ Å)	Mo- K_{α} ($\lambda = 0.71073$ Å)
Formula	$\mathrm{C_{25}H_{27}F_6FeN_5O_6S_2}$	$\mathrm{C}_{73}\mathrm{H}_{70}\mathrm{B}_{2}\mathrm{FeN}_{6}$	C24H31Cl2N5NiO9	$C_{26}H_{31}Cl_2F_6FeN_5O_6S_2$	C24H31.5ClF6FeN5O0.25P	C23H31Cl2NiN5O9
$M/g \cdot mol^{-1}$	727.49	1108.82	663.15	814.43	630.31	651.14
Crystal dimensions/mm ³	$0.14 \times 0.14 \times 0.13$	$0.23 \times 0.09 \times 0.09$	$0.31 \times 0.07 \times 0.06$	$0.35 \times 0.31 \times 0.28$	$0.72 \times 0.21 \times 0.16$	$0.44 \times 0.11 \times 0.07$
Crystal description	pale yellow cube	yellow rod	light violet column	dark red block	green rod	clear light violet needle
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	triclinic	orthorhombic
Space group	$P2_{1}/c$	$P2_{1}/n$	$P2_{1}/c$	$P2_{1}/c$	$P\overline{1}$	$Pna2_1$
a/Å	11.8155(3)	12.0919(2)	9.6432(6)	13.4336(2)	8.2754(4)	16.5101(6)
b/Å	17.6019(5)	33.6364(5)	15.5442(13)	20.5689(2)	12.0926(5)	13.5280(4)
c/Å	14.8106(4)	14.6502(2)	19.6209(15)	13.4353(2)	13.8127(6)	12.2737(4)
$\alpha/^{\circ}$	90	90	90	90	99.414(3)	90
$eta / ^{\circ}$	96.124(3)	90.4960(10)	108.042(5)	115.080(2)	90.005(4)	90
γ/°	90	90	90	90	90.983(3)	90
$V/Å^3$	3062.66(14)	5958.42(16)	2796.5(4)	3362.35(10)	1363.43(11)	2741.31(16)
Ζ	4	4	4	4	2	4
$\boldsymbol{\varrho}_{\mathrm{calc}}/\mathrm{g}\cdot\mathrm{cm}^{-3}$	1.578	1.236	1.575	1.609	1.540	1.578
μ/mm^{-1}	0.713	2.399	0.946	6.95	0.776	0.96
<i>F</i> (000)	1488	2344	1376	1664	649	1352
T_{\min}/T_{\max}	0.92072 / 1.00000	0.6084 / 0.8131	0.91485 / 1.00000	0.32926 / 1.00000	0.85009 / 1.00000	0.81018 / 1.00000
Measured reflections/ R_{σ}	13451 / 0.0488	46761 / 0.0435	11741 / 0.1405	30155 / 0.0200	10611 / 0.0271	11982 / 0.0376
Independent reflections/ R_{int}	6006 / 0.0351	10755 / 0.0597	5481 / 0.0864	6379 / 0.0319	5338 / 0.0190	4759 / 0.0309
$\theta_{\rm min}$ /°, $\theta_{\rm max}$ /°	3.42 / 26.00	2.63 / 67.50	3.39 / 26.00	3.63 / 26.00	3.45 / 26.00	3.65 / 25.00
Data/restraints/parameters	6006 / 155 / 480	10755 / 0 / 739	5481 / 78 / 409	6379 / 491 / 120	5338 / 337 / 0	4759 / 399 / 59
<i>R</i> indices $(I > 2\sigma)$	$R_1 = 0.0460$	$R_1 = 0.0384$	$R_1 = 0.0659$	$R_1 = 0.0339$	$R_1 = 0.0306$	$R_1 = 0.0333$
	$wR_2 = 0.0925$	$wR_2 = 0.0845$	$wR_2 = 0.1051$	$wR_2 = 0.0885$	$wR_2 = 0.0790$	$wR_2 = 0.0742$
R indices (all data)	$R_1 = 0.0617$	$R_1 = 0.0523$	$R_1 = 0.1188$	$R_1 = 0.0357$	$R_1 = 0.0352$	$R_1 = 0.0356$
	$wR_2 = 0.0980$	$wR_2 = 0.0927$	$wR_2 = 0.1309$	$wR_2 = 0.0899$	$wR_2 = 0.0814$	$wR_2 = 0.0754$
GoF	<i>S</i> = 1.058	<i>S</i> = 1.035	<i>S</i> = 1.038	<i>S</i> = 1.052	<i>S</i> = 0.925	<i>S</i> = 1.057
	<i>S</i> ′ = 1.149	<i>S</i> ′ = 1.035	S' = 1.046	S' = 1.059	S' = 0.925	S' = 1.089
$\Delta \boldsymbol{\varrho}_{\text{fin}}(\text{max/min})/e \cdot \text{\AA}^{-3}$	0.362 / -0.325	0.250 / -0.303	0.989 / -0.654	0.325 / -0.888	0.341 / -0.268	0.305 / -0.332

Table S1. Crystallographic data.

	$[NiL^1(ClO_4)]^+$	$[NiL^{2}(OH_{2})]^{2+}$				
bond lengths						
Ni1-N1	204.9(4)	210.2				
Ni1-N4	211.5(4)	215.4				
Ni1-N10	201.2(4)	210.2				
Ni1-N20	206.9(4)	208.0				
Ni1-N30	203.5(4)	207.9				
Ni1-O	262.4(2) ^a	210.6				
bond angles						
N1-Ni1-N4	78.2(1)	94.4				
N1-Ni1-N30	160.8(1)	174.7				
N10-Ni1-O	164.7(5)					
N4-Ni1-O		167.6				
N20-Ni1-N4	154.1(2)					
N10-Ni1-N20		171.0				
distortion parameters						
$\Sigma/^{\circ}$	112.8	52.8				
$S(O_h)$	4.03	1.96				
<i>S</i> (TP)	8.00	10.46				

Table S2. Selected bond lengths and angles for the nickel(II) complexes $[NiL^1(ClO_4)]^+$ and $[NiL^2(OH_2)]^{2+}$.

 \overline{a} Oxygen atom O1 is disordered over two positions (O1A, O1B): Parameters involving O1A are given in the table; d(Ni1-O1B) = 272.7(2) pm; angle(N1-Ni1-O1B) = 87.4(5)°; $\Sigma = 17.6^{\circ}$ (O1B); $S(O_h) = 3.97$ (O1B).

	[1(X)] ^{<i>n</i>+}		[2 (X)] ^{<i>n</i>+}				
	X = OTf	X = MeCN	X = OTf	X = MeCN			
bond lengths							
Fe1-N1	220.3	221.5 (206.7)	224.3	223.0 (209.8)			
Fe1-N4	228.6	229.6 (203.8)	226.4	225.9 (203.8)			
Fe1-N10	215.1	216.8 (201.1)	214.6	217.1 (200.6)			
Fe1-N20	228.8	229.6 (207.3)	216.7	218.5 (202.0)			
Fe1-N30	214.1	216.4 (197.7)	218.3	220.0(201.5)			
Fe1-X	220.7	220.3 (194.8)	218.2	219.8 (193.8)			
bond angles							
N1-Fe1-N4	72.9	72.5 (77.8)	90.3	90.7 (94.4)			
N1-Fe1-N30	139.9	139.2 (157.5)	167.1	166.6 (175.7)			
N4–Fe1–X	164.6	163.6 <i>(173.3)</i>	159.3	164.1 <i>(171.3)</i>			
N10–Fe1–N20 156.7		153.0 (167.0)	162.2	162.0 (172.1)			
distortion parameters							
$\overline{\Sigma^{ m o}}$	150.9	153.4 (90.1)	92.5	89.5 (51.0)			
$S(O_{\rm h})$	7.36	5.70 (2.21)	2.01	1.62 (0.56)			
S(TP)	4.80	5.83 (10.26)	10.29	11.04 <i>(13.69)</i>			

Table S3. Selected bond lengths (pm) and angles (°) from optimised structures (B3LYP-D3/def2-TZVP/COSMO(MeCN)) of the complex ions $[1(X)]^{n+}$ and $[2(X)]^{n+}$ in their quintet-spin states. ^{*a*}

^{*a*} Data in italics denote the optimised structures of the actonitrile complexes in their spin-singlet states.

	[1(MeCN)](OTf) ₂	[1 (OTf)	$\mathbf{I}(\text{OTf})](\text{OTf}) \qquad [2(\text{MeCN})](\text{OTf})_2$)](OTf) ₂	[2 (OTf)](OTf)	
T	20.2(1) K	weight ^a	20.0(1) K	weight ^a	20.2(1) K	weight ^a	20.1(1) K ^b	weight ^a
δ	1.086(4) 1.196(18) 0.144(3π1)	77.1 % 20.7 % 2.1%	1.138(7) 1.116(4) 0.413(21)	49.0 % 42.2 % 8.8 %	0.527(2) 1.101(32) 1.057(12)	86.7 % 6.7 % 6.6 %	0.289(22) 1.094(2) 1.029(17)	3.0 % 86.0 % 11.1 %
ΔE_Q	2.132(10) 3.027(52) 1.661(62)		2.712(26) 3.572(11) 1.678(43)		0.345(2) 2.800(110) 3.468(30)		1.015(45) 2.160(5) 3.147(43)	
Г _{НWHM}	0.258(8) 0.293(37) 0.098(48)		0.279(15) 0.168(9) 0.170(28)		0.151(20) 0.233(77) 0.123(27)		0.099(32) 0.184(4) 0.207(33)	
Τ	100.4(2) K	weight ^a	100.0(1) K	weight ^a	99.9(1) K	weight ^a	100.5(1) K [°]	weight ^a
δ	1.066(5) 1.220(19) 0.130(31)	79.5 % 16.1 % 4.4 %	1.138(15) 1.098(6) 0.421(42)	23.5 % 58.7 % 17.8 %	0.520(1) 1.202(31) 1.032(13)	84.7 % 10.9 % 4.4 %	0.342(30) 1.088(3) 1.028(37)	8.7 % 82.1 % 9.2 %
ΔE_Q	2.112(11) 2.909(43) 1.485(62)		2.335(52) 3.110(18) 1.356(81)		0.353(2) 2.659(86) 3.452(27)		1.077(61) 2.123(7) 3.212(94)	
Г _{нwhm}	0.254(9) 0.224(35) 0.138(48)		0.215(35) 0.199(12) 0.284(51)		0.145(2) 0.322(64) 0.106(26)		0.171(37) 0.176(5) 0.232(70)	
Τ					100.0(1) K ^d	weight ^a	100.6(1) K ^d	weight ^a
δ	-		-		0.366(13) 1.097(2) 1.052(13)	10.2 % 82.6 % 7.2 %	0.389(27) 1.076(3) 1.090(28)	11.1 % 77.2 % 11.7 %
ΔE_Q	-		-		0.910(26) 2.069(4) 3.553(25)		0.883(51) 2.033(6) 3.062(69)	
Г _{НWHM}	-		-		0.167(20) 0.196(3) 0.142(20)		0.192(36) 0.158(4) 0.240(53)	
Т	200.6(4) K	weight ^a	200.0(1) K	weight ^a				
δ	1.021(19) 1.128(58) 0.194(93)	61 % 29 % 10 %	1.080(17) 1.068(14) 0.312(40)	29 % 42 % 29 %				
ΔE_Q	2.007(42) 2.530(180) 1.230(180)		2.188(95) 2.617(52) 1.299(77)		-		-	
Γ_{HWHM}	0.18/(36) 0.250(120) 0.190(140)		$\begin{array}{c} 0.167(50) \\ 0.153(35) \\ 0.240(51) \end{array}$		-		-	

Table S4. Mössbauer parameters $[mm s^{-1}]$ obtained by least-squares fitting with doublets of Lorentzian lines. The isomer shift δ is specified relative to metallic iron at room temperature and was not corrected in terms of second order Doppler shift.

a Relative spectral areas of the sub-spectra (volume fraction); fit with a ratio of the spectral areas of the low velocity peak to the high velocity peak of ^b 1.077(18) and ^c 1.101(31); ^d Measured at $T \approx 100$ K after tempering at T = 350 K for at least three days under reduced pressure.

Figure S1: Distortion in the N₄ equatorial planes of the crystal structures of [1(OTf)](OTf) (left) and [2(OTf)](OTf) (right); planes defined by N(10)/N(20)/N(30) and N(1)/N(10)/N(20), respectively.

Figure S2: Optimised structures (B3LYP-D3/def2-TZVP/COSMO(MeCN)) of the complex ions $[1(OTf)]^+$ and $[2(OTf)]^+$; view along a *pseudo*-threefold axes. Average trigonal-distortion angles θ are shown.

Figure S3: ¹⁹F-NMR spectra (188 MHz; 295 K) of solutions of the complexes [1(OTf)](OTf) (a,b) and [2(OTf)](OTf) (c,d) in (D₃)-acetonitrile (a,c) and in (D₂)-dichloromethane (b,d).

Figure S4: Van't Hoff plots of the temperature dependence of the SCO equilibrium of $[2(MeCN)](OTf)_2$ in MeCN; equilibrium constants derive from measured ε_T (Figure 3c in the manuscript) as: $K = (\varepsilon(ls) - \varepsilon_T)/(\varepsilon_T - \varepsilon(hs))$

with $\epsilon(hs) = 1100 \text{ L mol}^{-1} \text{ cm}^{-1}$

black: $\epsilon(ls) = 9000 \text{ L mol}^{-1} \text{ cm}^{-1}$; red: $\epsilon(ls) = 9600 \text{ L mol}^{-1} \text{ cm}^{-1}$.

From plots of $\ln K$ vs. 1/T, the thermodynamic parameters $\Delta_{\text{SCO}}S_{\text{m}}$ and $\Delta_{\text{SCO}}H_{\text{m}}$ are obtained according to: $\ln K = \Delta_{\text{SCO}}S_{\text{m}}/R - \Delta_{\text{SCO}}H_{\text{m}}/RT$

Figure S5: (a,b) ¹H-NMR spectra (200 MHz; 295 K) of solutions of the complex [1(OTf)](OTf) in [D₃]-acetonitrile (a) and in (D₂)-dichloromethane (b); (c-e) ¹H-NMR spectra ((D₃)-acetonitrile; 400 MHz) of the complex [2(MeCN)](OTf)₂ at T = 233 K, (c), at T = 268 K (d), and T = 295 K (e); (f) ¹H-NMR spectrum ((D₂)-dichloromethane; 200 MHz) of the complex [2(OTf)](OTf) at T = 295 K.

Figure S6: Temperature dependence of the effective magnetic moment of an aged powder sample of $[2(MeCN)](OTf)_2$; (a) 1st heating cycle; (b) 2nd heating cycle.