Bulk spin-crossover in the complex [FeL(NCS)₂] of a novel tris(pyridyl)ethane-derived N₄-ligand— A look beneath the surface

Dennis Wiedemann and Andreas Grohmann*

Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

Additional Figures

Fig. S1. Solution of [FeL(NCS)₂] (1) in acetone just above the melting point (left) and at room temperature (right).

Fig. S2. ORTEP plot of $\mathbf{1} \cdot CD_2Cl_2$ at 150 K (ellipsoids of 50 % probability, hydrogen atoms omitted for clarity).

Fig. S3. Crystal of [FeL(NCS)₂] · CHCl₃ (1a) at 150 K (left) and 300 K (right).

Fig. S4. ORTEP plots of $[FeCl_2L] \cdot CH_3OH$ ($2 \cdot CH_3OH$, left) and $[FeCl_2L]PF_6$ (3, right) at 150 K (ellipsoids of 50 % probability, solvent molecule, anion and hydrogen atoms omitted for clarity).

Fig. S5. MERCURY plot of structure detail in **1b** at 150 K: complex chain along [100] with two chloroform molecules (stick model, contacts as pink dashed lines, π stacking rings and thiocyanato ligands highlighted).

Fig. S6. MERCURY plot of structure detail in **1a** at 150 K: complex dimer with chloroform molecule (stick model, contacts as pink dashed lines, interacting parts highlighted).

Fig. S7. MERCURY plot of structure detail in **1a** at 150 K: zigzag chain along [001] internally interacting *via* thiocyanato ligands (stick model, contacts as pink dashed lines, interacting parts highlighted).

Analysis of the Thermal-Expansion Tensor of 1a

$$x = p_0 + p_1 \cdot T$$

Table S1. Polynomial fit parameters for **1a** (thermal regime).

X	p_0	$p_1/10^{-3}~{ m K}^{-1}$
a/Å	18.052320	0.690928
b/Å	9.192367	0.762668
c/Å	16.167410	1.837536
$eta/^{\circ}$	105.433341	-3.794358
$V/Å^3$	2584.622000	672.095600

Fig. S8. Plots of cell constants and volume vs. temperature (in K) with polynomial fits for 1a (thermal regime).

Fig. S9. Plots of slice planes through the isosurface representation of α for **1a** (thermal regime).

$$x = p_0 + p_1 \cdot T + p_2 \cdot T^2 + p_3 \cdot T^3$$

Table S2. Polynomial fit parameters for **1a** (SCO regime).

X	p_0	$p_1/10^{-3}~{ m K}^{-1}$	$p_2/10^{-6}~\mathrm{K}^{-2}$	<i>p</i> ₃ /10 ⁻⁹ K ⁻³
a/Å	20.431040	-35.511980	171.737300	-254.781600
b/Å	9.249759	0.507555	0	0
c/Å	13.915800	18.530860	-28.751820	0
β / $^{\circ}$	124.372062	-220.841267	832.772191	-1077.474933
$V/Å^3$	1976.989000	5166.064000	-7732.078000	0

Fig. S10. Plots of cell constants and volume vs. temperature (in K) with polynomial fits for 1a (SCO regime).

Fig. S11. Plots of slice planes through the isosurface representation of α for **1a** (SCO regime).

Analysis of the Thermal-Expansion Tensor of 1b

$$x = p_0 + p_1 \cdot T$$

Table S3. Polynomial fit parameters for **1b** (thermal regime).

X	p_0	$p_1/10^{-3}~{ m K}^{-1}$
a/Å	13.704340	0.548125
b/Å	15.309980	1.122647
c/Å	14.270460	1.656687
$oldsymbol{eta}/^{\circ}$	92.059393	-3.525024
$V/Å^3$	2990.535000	710.340500

Fig. S12. Plots of cell constants and volume vs. temperature (in K) with polynomial fits for 1b (thermal regime).

Fig. S13. Plots of slice planes through the isosurface representation of α for **1b** (thermal regime).