Diffusion Pathways and Activation Energies in Crystalline Lithium-Ion Conductors

Abstract

Geometric information about ion migration (diffusion pathways) and knowledge about the associated energy landscape (migration activation barriers) are essential cornerstones for a comprehensive understanding of lithium transport in solids. Although many lithium-ion conductors are discussed, developed, and already used as energy-storage materials, fundamental knowledge is often still lacking. In this microreview, we give an introduction to the experimental and computational methods used in our subproject within the research unit FOR 1277, “Mobility of Lithium Ions in Solids (molife)”. These comprise, amongst others, neutron diffraction, topological analyses (procrystal-void analysis and Voronoi–Dirichlet partitioning), examination of scattering-length density maps reconstructed via maximum-entropy methods (MEM), analysis of probability-density functions (PDFs) and one-particle potentials (OPPs), as well as climbing-image nudged-elastic-band (cNEB) computations at density-functional theory (DFT) level. The results of our studies using these approaches on ternary lithium oxides and sulfides with different conduction characteristics (fast/slow) and dimensionalities (one-/two-/three-dimensional) are summarized, focusing on the close orbit of the research unit. Not only did the investigations elucidate the lithium-diffusion pathways and migration activation energies in the studied compounds, but we also established a versatile set of methods for the evaluation of data of differing quality.

Publikation
Zeitschrift für Physikalische Chemie 2017, 231, 1279–1302
Dr. Dennis Wiedemann
Dr. Dennis Wiedemann
Technischer Berater für Umweltfragen
Chemiker · Kristallograph

Ich bin promovierter Chemiker und berate zu immissionsschutz- und wasserrechtlichen Genehmigungsfragen.