
Z. Phys. Chem. 2017; 231(7–8): 1279–1302

Dennis Wiedemann*, Mazharul M. Islam, Thomas Bredow 
and Martin Lerch
Diffusion Pathways and Activation Energies 
in Crystalline Lithium-Ion Conductors
DOI 10.1515/zpch-2016-0918
Received October 14, 2016; accepted March 17, 2017

Abstract: Geometric information about ion migration (diffusion pathways) and 
knowledge about the associated energy landscape (migration activation barriers) 
are essential cornerstones for a comprehensive understanding of lithium trans-
port in solids. Although many lithium-ion conductors are discussed, developed, 
and already used as energy-storage materials, fundamental knowledge is often 
still lacking. In this microreview, we give an introduction to the experimental and 
computational methods used in our subproject within the research unit FOR 1277, 
“Mobility of Lithium Ions in Solids (molife)”. These comprise, amongst others, 
neutron diffraction, topological analyses (procrystal-void analysis and Voronoi–
Dirichlet partitioning), examination of scattering-length density maps recon-
structed via maximum-entropy methods (MEM), analysis of probability-density 
functions (PDFs) and one-particle potentials (OPPs), as well as climbing-image 
nudged-elastic-band (cNEB) computations at density-functional theory (DFT) 
level. The results of our studies using these approaches on ternary lithium oxides 
and sulfides with different conduction characteristics (fast/slow) and dimen-
sionalities (one-/two-/three-dimensional) are summarized, focusing on the close 
orbit of the research unit. Not only did the investigations elucidate the lithium-
diffusion pathways and migration activation energies in the studied compounds, 
but we also established a versatile set of methods for the evaluation of data of 
differing quality.
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1  Introduction
A variety of experimental methods is available to characterize the mobility of 
lithium ions in solids: e.g. electrical conduction phenomena and activation ener-
gies may be deduced from impedance spectroscopy; nuclear magnetic resonance 
(NMR) spectroscopy shows the dimensionalities of migration pathways and differ-
ences between crystallographically unique ion positions; tracer-diffusion experi-
ments allow for the investigation of self-diffusion on a macroscopic scale. Yet, 
none of these provide direct information on the geometry of diffusion pathways.

In light of this shortcoming, variable-temperature neutron diffraction holds 
a unique position amongst experimental approaches. Because scattering takes 
place at the atomic nuclei, it is sensitive towards the otherwise (e.g. for X-ray 
techniques) notoriously elusive lithium ions. Furthermore, it provides a precise 
space- and time-averaged picture of the crystal structure, which is not influ-
enced by electron-density shifts due to bonding, polarization, or other interac-
tions. Diffusion-induced displacement is primarily coded in the intensity of the 
reflections at high diffraction angles. Data may be collected either from powder 
or single-crystal specimen to derive a crystal-structure model using the Rietveld 
method or refining on structure-factor magnitudes. Subsequently, several meth-
odologies allow for the mapping of diffusion pathways, the assessment of their 
relative probability, and for the evaluation of associated effective energy barri-
ers. In our recent work, we have focused on three approaches (named in order of 
increasing complexity): topological analyses, mapping of the scattering-length 
density (SLD) as reconstructed via maximum-entropy methods (MEM), and the 
evaluation of the probability-density function (PDF) as well as the effective one-
particle potential (OPP).

These experimental techniques are ideally complemented by solid-state 
quantum-chemical methods. The present state of the art of theoretically mod-
eling ion mobility in solids is based on density-functional theory (DFT) combined 
with periodic supercells. These methods allow for a pointwise calculation of the 
potential-energy hypersurface (PEHS) along a local lithium migration pathway, 
which is defined as the minimum-energy pathway (MEP). The MEP can be 
calculated within various approximations. The widely used nudged-elastic-band 
(NEB) method starts from a linear interpolation of the atomic positions between 
initial and final ion configuration [1, 2], so that both crystal structures (within the 
selected unit cell) must be known in advance. The MEP is calculated for a small 
number of images (usually three to seven) between these endpoints. For each 
image, the atomic positions of all or a selected set of atoms are relaxed under 
the restriction that the structures are equidistant with respect to the intrinsic 
reaction coordinate (IRC) connecting the initial and final configuration. This is 
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achieved by projecting out the MEP tangential parts of the atomic forces in the 
energy minimization.

In the climbing-image NEB (cNEB) variant, this constraint is relaxed for the 
image with the highest energy to obtain a better approximation of the saddle point 
[3]. The PEHS around a known structure can be explored with the dimer method 
[4]. A search for a saddle point is initiated either in a random direction or along 
the normal vector with the smallest eigenvalue obtained for the initial minimum 
structure. This approach allows the detection of unexpected MEPs but is compu-
tationally much more demanding than the cNEB method, which is therefore pre-
ferred, in case the local migration process is known. Traditional transition-state 
(TS) optimization procedures based on the Newton–Raphson method tend to fail 
due to numerical instabilities if the initial structure is not close enough to that of 
the TS. Thus, a reasonable compromise is to combine NEB and Newton–Raphson 
methods by taking the image with the highest energy from a cNEB calculation as 
a starting structure for a TS optimization.

A completely different approach to simulate migration processes is the 
molecular dynamics (MD) technique at DFT level (aiMD). The calculated atomic 
forces are used to solve Newton’s equations of motion. The velocities and updated 
atomic positions are calculated numerically with discrete time steps, e.g. by the 
velocity Verlet algorithm [5]. In principle, the aiMD approach can find all possible 
migration processes for a given structure. However, since the activation barriers 
for lithium migration in solids are usually large, a jump process is a rare event 
and an extremely large number of time steps in the order of 105–106 has to be cal-
culated, which limits the applicability for solids with large unit cells. It should be 
noted that such and even larger time scales are accessible with classical MD simu-
lations (cMD), in which forces are calculated from empirical pair potentials. With 
cMD, the results are thus strongly dependent on the quality of the empirical para-
meters. On the other hand, due to advances in numerical-method development 
and computer hardware, aiMD simulations of solids have become an important 
tool in theoretical solid-state chemistry [6]. With the metadynamics technique 
[7], it is possible to accelerate MD simulations of rare events by several orders of 
magnitude. The method, however, requires knowledge about the final structure 
in order to define a generalized reaction coordinate that distinguishes the initial 
and final points. Metadynamics simulations provide the free energy of activation, 
but not the exact TS structure. The latter is only approximated by the snapshot 
with the highest energy and must be further refined as mentioned before.

In this microreview, we present a general introduction to our experimen-
tal and computational methods, as well as a selection of results acquired in the 
framework of FOR 1277: “Mobility of Lithium Ions in Solids (molife)” funded by 
Deutsche Forschungsgemeinschaft (DFG).
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2  �Methods of evaluation

2.1  �Topological analyses

2.1.1  �Common aspects

Topological methods divide ionic conductors into a static framework and mobile 
interstitial species via partitioning of the direct crystallographic space. They rely 
only on accurately determined framework-ion positions, while the interstitial 
containing the mobile ions is treated as void and classified by its ability to host or 
conduct them [8]. Additional prior knowledge (e.g. electron-density distributions 
from ab-initio calculations or ionic radii from statistical analyses/data mining) is 
inferred to warrant this classification. Topological methods are especially appeal-
ing because of their high speed, low computing cost, and presentiveness – be it 
as a heuristic tool to scan for possible migration pathways or as a standalone 
method for lower-quality data.

To understand the underlying problem, let us assume we want to topologi-
cally analyze a crystal of known structure. Chemical intuition tells us that this 
crystal is somehow “made up of” its components – be it molecules or small ions. 
But how exactly do we partition the crystallographic space, so that any point 
of the asymmetric unit is assigned to a component or a void? In other words, 
where exactly does one component end and another one or a void begin? The 
answer to this, at first glance, rather trivial question is that there is no “correct” 
or even single best way for partitioning. But two approaches have become par-
ticularly well-established for the investigation of fast ion conductors during the 
last 10  years: the Voronoi–Dirichlet partitioning (VDP) and the procrystal-void 
analysis (PVA). These methods are of great value

–– as supportive approaches, which are more powerful then crystal-chemical 
rules of thumb,

–– for unruly datasets, which do not allow for the use of high-end methods, and
–– as heuristic means to search for and categorize migration pathways.

When dealing with disorder, some heed has to be paid: most crystal structures 
are derived from diffraction data and thus represent a time and space average 
(becoming, e.g. manifest in sites with mixed or partial occupation). Topological 
analyses, on the other hand, deal with ordered structures and their local features. 
Because of this, ordered supercells with localized defects must be set up to reflect 
probable situations. Not only can this be tedious (high number of possibilities) 
or biased (arbitrary choice of models), but the mere substitution/deletion of an 



Paths and Barriers in Crystalline Lithium-Ion Conductors   1283

atom also introduces a systematic error. The configuration around the modeled 
defect will be energetically unfavorable because it is not locally “relaxed”, but 
a representation of the predominant situation in the whole crystal. Therefore, it 
must be kept in mind that topological analyses are somewhat more approximate 
when dealing with disordered systems.

2.1.2  �Procrystal-void analysis

Although procrystal analysis was originally developed for the examination of 
Hirshfeld surfaces in molecular crystals [9, 10], it also performed well in the 
characterization of voids in metal-organic/covalent organic frameworks [11] and 
migration pathways in ionic solids [12]. In its course, the so-called “procrystal” is 
constructed from the known crystal structure by centering spherically averaged 
electron density at( )rρ

�  at the atomic positions. These densities only depend on
the atom/ion present and are derived from ab-initio calculations. To investigate 
potential diffusion pathways, the set M of mobile species is not included in the 
construction of the procrystal, thus leaving only the static framework F and void 
space:

at at at
pro

       

( ) ( )    ( ) ( ) i i i
i i i

r r r rρ ρ ρ ρ
∈ ∈

= = −∑ ∑ ∑
� � � �

F M

The procrystal density pro( )rρ
�  is defined at any position r�  and conveniently

given in Hartree atomic units (a0: Bohr radius) [13]:

3 3
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�

Integrated facilities to calculate and visualize procrystal-density isosurfaces from 
crystal-structure data are available in the fairly state-of-the-art program crystal-
explorer [14]. An isosurface for a given value (isovalue) will be a set of continu-
ous closed surfaces, which may, however, seem to be capped at the boundaries 
for reasons of representation. The higher the isovalue is, the closer the surface 
is to the atomic centers. Below a certain threshold, there will be no associated 
surfaces, because the procrystal density is finite everywhere. So, when succes-
sively raising the isovalue from zero, a first isosurface will appear and show the 
regions with the lowest procrystal density: the largest voids (see Figure 1, left). 
The enclosed volume will then grow to show more features and eventually form 
continuous channels, layers, or networks: the most probable migration pathways 
(especially if they comprise the positions of the excluded mobile species; see 
Figure 1, center). More features – less probable pathways – may ensue before the 
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isosurface closely covers the immobile framework or even everts to close around 
isolated molecular species (see Figure 1, right).

In this way, it is possible to discriminate probable from less probable path-
ways. But the choice of the isovalue, at which an indicated pathway can be con-
sidered viable, may seem somewhat arbitrary at first glance. However, it has been 
shown that a value of 0.002 a.u. compares well to smoothed van-der-Waals sur-
faces of small to medium-sized molecules and their electron densities from ab-
initio Hartree–Fock calculations (6-31G* level) [16]. An isovalue of 0.0003 a.u., on 
the other hand, is fitting for the investigation of porous materials [11] and lithium 
diffusion pathways are observed at 0.004–0.006 a.u. and 0.002–0.004 a.u. in 
layered and other structures, respectively [12]. (In our experience, poor to moder-
ate lithium-ion conductors fall into the higher range, even if not layered).

According to the simplified picture of the PVA, the most probable pathway 
of migration between two points is the one of the lowest procrystal density. The 
position of the density maximum along it signifies the bottleneck of diffusion and 
the associated density (or its difference to the path’s minimum) should be related 
to the activation energy. Nevertheless, to our knowledge, a sound correlation has 
not yet been found [12].

2.1.3  �Voronoi–Dirichlet partitioning analysis

The VDP analysis takes a completely different approach to the partitioning of 
space and the concept of voids. It is based on purely mathematical concepts 

Fig. 1: Procrystal-void surfaces of the defective Ti3O7
2− framework in ramsdellite-like Li2Ti3O7 

(orthorhombic, Pnma) at 422 °C for ρpro = 0.004 a.u. (left), 0.006 a.u. (center), and 0.02 a.u. 
(right) [15]. Gray: titanium, red: oxide ions (arbitrary radii), blue: procrystal-density isosur-
face (caps not drawn for clarity, inner side in gray), orange circles: bottleneck positions. View 
approximately along [010].
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first introduced into crystallography by Niggli in 1927 [15] and does not rely 
on  prior knowledge (except for the crystal structure) in its initial steps. The 
idea behind it is simple: any point is assigned to the atomic center that is nearer 
than all the others. Also, the algorithm for construction is straightforward:

–– connect any center to the centers in its first coordination sphere with straight 
line segments,

–– construct a perpendicular bisecting plane for every line segment, and
–– cut the planes at intersections with other planes.

The resulting atomic Voronoi–Dirichlet polyhedra (see Figure 2, left) are centered 
at the atomic positions and tessellate crystallographic space. The centers of ele-
mentary voids are the points the furthest away from the at least four adjacent 
atomic centers – the vertices of the Voronoi–Dirichlet polyhedra. They are con-
nected by straight elementary channels, which run as far away as possible from 
at least three adjacent atomic centers. Thus, they correspond to polyhedral edges 
(see Figure 2, center) [17]. But being “far away” is certainly not enough to classify 
as a crystallographic void structure, which can host or conduct an ion. Elemen-
tary voids/channels can be

–– too small,
–– ill-shaped,
–– surrounded by like-charged ions,
–– too narrow,
–– isolated, or a dead-end.

At this point, additional prior knowledge must be inferred. The size and shape of 
an elementary void is assessed using its spherical-domain radius Rsd (radius of 
an isochoric sphere) and its second moment of inertia G3. Typical values required 
by known ions are tabulated [18]. The influence of like-charged ions is typically 

Fig. 2: Details from the VDP analysis of the AlO2
− framework in γ-LiAlO2 (tetragonal, P41212) at 

72 °C. Voronoi–Dirichlet polyhedra of the aluminum and oxide ions (left), initial void structure 
(center), conduction pattern after deletion of improbable voids and channels (right). Blue: 
lithium, gray: aluminum, red: oxide ions (Slater radii), black: elementary voids and channels 
(arbitrary radii). View approximately along [001].



1286  D. Wiedemann et al.

estimated from the solid angle Ω of interaction with them. Finally, the width of a 
channel is characterized via the adjacency radius Rad that should not exceed the 
typical anion–cation distance Rca by large. In this way, VDP analysis takes the 
nature of framework and migrating ions into account to transparently classify dif-
fusion pathways according to their probability (cf. Figure 2, right). The necessary 
tools for VDP calculations are integrated into the well-maintained and powerful 
program ToposPro [19].

2.2  �Mapping of scattering-length densities

Maps of the scatterer density are a valuable tool to (visually) identify diffusion 
pathways without the need to actually model them. At high temperatures, ther-
mally activated migration of scatterers (i.e. the conducting ions) sets in. In the 
space- and time-averaged picture of diffraction, this movement manifests as a 
“smearing” of previously localized scatterer density along the diffusion paths. 
For neutron experiments, the scatterers are the atomic nuclei and their neutron-
scattering lengths are the physical observables. Maps of the SLD are constructed 
from observed structure factors including their phases so that a reliable structure 
solution comprising the mobile ions is a prerequisite.

Classical maps acquired by Fourier synthesis often suffer from noise and – 
especially in the case of truncation in the high-angle regime – termination arti-
facts (see Figure 3, center). The reconstruction via maximum-entropy methods is 
a means to overcome this (see Figure 3, right). MEM is a versatile approach to the 
estimation of a model from a limited amount of information by maximizing infor-
mation entropy under constraints consistent with observed physical quantities 

Fig. 3: SLD maps of ramsdellite-like Li2Ti3O7 (orthorhombic, Pnma) at 24 °C. Located densities 
from calculated structure factors (left), Fourier transform of observed structure factors (center), 
and MEM-reconstructed densities (right). Dark blue: disordered lithium, gray: titanium, red: 
oxide ions (arbitrary radii); yellow and light blue: isosurfaces for +0.3 fm Å−3 and –0.3 fm Å−3, 
respectively. View approximately along [010]. Image generated using Vesta [20].



Paths and Barriers in Crystalline Lithium-Ion Conductors   1287

[21]. According to the principle of maximum entropy, the resulting probability 
distribution is “the least biased estimate possible on the given information” [22] 
and thus best represents the current state of knowledge. Being part of Bayesian 
statistics, the underlying theory stems from statistical mechanics in the 19th 
century and was further developed in the contexts of information theory and 
thermodynamics.

In the crystallographic case, MEM yields the maximum variance of cal-
culated structure factors within standard deviations of observed structure 
factors, thus producing feature-deprived scatterer-density maps that are less 
prone to misinterpretation [23, 24]. For their construction, the unit cell is first 
divided into N voxels, in which the scatterer density is regarded as uniform. 
With the normalized (to a sum of unity) scatterer density ρ′, the dimensionless 
information (or Shannon) entropy H is then formulated. This quantity differs 
from the thermodynamic (or Gibbs) entropy S only by a constant divisor of 
kB, the Boltzmann constant. If a normalized prior scatterer density τ′ is to be 
inferred, the relative entropy (or Kullback–Leibler divergence [25]) D is used 
instead:

1B

ln
N

i i
i

SH
k

ρ ρ
=

= = − ′ ′∑

1
( || ) ln
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i

i
i i

D
ρ
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∑

Using the method of Lagrange multipliers, H or D is then maximized with the sum 
over all normalized scatterer densities constrained to unity. Further constraints 
(mostly featuring a criterion of convergence instead of no tolerance) enter the 
maximization at this point. Amongst these, the so-called F constraint is the most 
important, as it introduces the observed structure factors and an uncertainty-
based (and possibly lattice-plane dependent) weighting scheme. When dealing 
with powder profile data, a G constraint handling reflection overlap may be used 
in addition. Both of these depend on the calculated structure factors, which are 
the Fourier transforms of the variated densities ρ′. The hence necessary iterative 
process is implemented in the program Dysnomia [26], successor to Prima [27]. 
Classically, the data are treated with separate F and G constraints, which are 
quadratic with respect to the structure-factor or intensity differences (i.e. a least-
squares condition). Dysnomia, in contrast, uses F and G constraints of multiple 
orders n = 2, 4, 6, …, 16 and invariably merges those of the same order into gener-
alized constraints Cn. These are then linearly combined using relative weights λn, 
which have to be adjusted by the user to warrant a Gaussian distribution of the 



1288  D. Wiedemann et al.

final structure-factor and intensity differences. The challenges employing this 
method are

–– to assess the validity and adjust the standard deviations provided with the 
input data (by putting in a correction factor E);

–– to test and adjust the relative weights λn, so that the central moments of the 
distributions approach unity;

–– to check the physical reasonability of the final scatter density.

If these are overcome, the resulting map is in best possible agreement with the 
measured data and contains a minimum of artifacts (the smoother appearance has 
led to the term “MEM filtering”; cf. Figure 3, right). Its interpretation may, however, 
be tedious, as chunks of SLD can often not be assigned to one and only one species. 
Fortunately, lithium is one of the rare elements with negative scattering lengths in 
its natural mixture due to the large proportion of lithium-7. This increases the con-
trast to the SLD associated with the framework, being mostly positive.1

2.3  �Probability-density functions and effective one-particle 
potentials

For well-behaved high-quality datasets, mapping of the SLD is not the end of 
the line. Instead, it is possible to model the “smearing” of scatterer density. This 
ultimately leads not only to the visualization of diffusion pathways but also to 
the calculation of effective migration barriers. To this end, the expression of the 
Debye–Waller factor (DWF) ( ),T q�  describing intensity changes due to atomic
displacement, has to be extended. In its common harmonic (i.e. Gaussian) for-
mulation, it is fit to model thermal displacement of scatterers by vibration (q� : 
scattering vector, U: tensor of atomic mean-square displacement):

2
harm( ) exp( 2 )T q q q= − π ⋅ TU� � �

1 The so-called “MEM/Rietveld method” presented herein is not the only application of MEM in 
crystallography. MEM-based pattern fitting (MPF), e.g. is more advanced and less biased towards 
structure factors calculated from Rietveld parameters [21, 26]. It relies on an initial MEM/Rietveld 
analysis, but then enters (so-called REMEDY) refinement cycles, in which a whole-pattern (Le-
Bail) fit of the MEM-derived calculated to the observed intensities is performed. This procedure 
ignores the crystal-structural model and only alters scale, background, profile, etc. parameters. 
New observed structure factors are calculated from the resulting fit and subjected to MEM analy-
sis. These steps are then iterated until convergence is reached. Unfortunately, only a few pro-
grams (like Rietan-FP) support this method in a convenient way.
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Referring to a Cartesian basis, this leads to the representation of atoms as 
ellipsoids known so well from standard crystal-structure analysis. Now, if the 
DWF is to describe more complex SLD distributions caused by static (e.g. from 
incomplete ordering during cooling) or dynamic disorder (e.g. from thermal 
diffusion), it has to be extended with anharmonic terms. For this purpose, the 
Gram–Charlier or quasi-moment expansion is the most often used approach (qi: 
components of the scattering vector) [28]:

3 4

anharm harm
(2 ) (2 )( ) T ( ) 1

3! 4!jkl j k l jklm j k l m
i iT q q C q q q D q q q q

 π π= + + + 
 

� �
…

In the general case (site symmetry: 1), it introduces ten cubic, 15 quartic, … 
dimensionless anharmonic tensorial coefficients Cjkl, Djklm, … per atom, which 
enter into the refinement as parameters. By far not all of them are significant so 
that they require careful evaluation. This also makes clear that high-quality data 
are necessary, especially in the high scattering-angle regime, where the effects of 
the DWF are most prominent.

The same way scatterer density and structure factors constitute a Fourier 
transform pair, an atom’s DWF and its probability-density function (PDF)2 ( )p u�  
do. The latter describes the differential probability of finding the atom displaced 
by a vector u�  from its reference position –3([ ( )] ).1 Åp u =

�  It can be analytically cal-
culated if the DWF takes the form of a Gram–Charlier expansion [ ( )H u� : Hermite 
polynomials] [29]:

anharm harm
1 1( ) ( ) 1 ( ) ( )
3! 4!jkl jkl jklm jklmp u p u C H u D H u

 
= + + + 

 

� � � �
…

As PDF maps are derived from a model, it is possible to draw them for an ensem-
ble of chosen atoms (e.g. all lithium ions in a unit cell). The resulting joint PDF is a 
very useful tool to visualize diffusion pathways and find the bottlenecks of migra-
tion (see Figure 4, left). Facilities to calculate DWFs including anharmonic terms 
and to derive PDFs from them are, e.g. provided by the program Jana2006 [31].

2 The probability-density function should not be confused with the (atomic) pair distribution 
function ( )g r�  that is also commonly abbreviated as “PDF”. The latter describes the distribution 
of distances between pairs of particles contained within a given volume and is used in diffrac-
tometry to analyze defective, amorphous, or nanocrystalline materials. In the course of such an 
analysis, the normalized scattering function ( )S q� – confusingly also called the “structure factor” 
– is deduced from the diffractogram by a multitude of corrections. Starting from it, ( )g r�  is acces-
sible via Fourier transformation.



1290  D. Wiedemann et al.

A further step enables the evaluation of activation barriers for migration 
along certain paths. From the joint PDF, the effective OPP ( ),V u�  as experienced
by ions on average, can be calculated straightforwardly (T: temperature, w: 
occupation):

B

( )
( ) ln

max( ( ))

i i
i

i iu i

w p u
V u k T

w p u

 
 = −  
  

∑
∑�

�
�

�

In this approach, every ion is treated as an individual Einstein oscillator subject 
to the Boltzmann distribution (true at the classical high-temperature limit). The 
probe for the OPP is the migrating ions themselves. If they are to scan the poten-
tial surface, a sufficient number of ions must be able to populate regions near 
the potential barriers along the pathway. If this is not the case, barriers will inad-
vertently be overestimated, as hardly any ion even had enough kinetic energy to 
overcome them. Cum grano salis, the maximum of the OPP along a certain path 
is the associated migration activation energy Em, which does not comprise the 
defect formation energy Ef [32].

Jana2006 provides the opportunity to calculate the OPP along a polygonal 
chain with up to ten defined coplanar points. For two-dimensional data, we have 
developed the open-source program CalcOPP [33], which is written in FORTRAN 
2003 and available as binary for Windows and Linux systems under an MIT 
license. With its help, it is possible to calculate OPPs from the PDFs within planes 

Fig. 4: Optimal diffusion path between two adjacent lithium positions in γ-LiAlO2 and position 
of the OPP maximum at 1475 K. Left: PDF isosurface for lithium probability density of 0.0125 Å−3 
(pink) with section through Li1, Li1′, and Max [gray; ca. (0 10 47)]. Right: 3D OPP map for the 
same section (e1, e2: orthogonal coordinates with origin at Li1; dark gray: areas of infinitely high 
potential). Reprinted with permission from [30]. © 2016 American Chemical Society.
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defined in Jana2006 and put them out in a format that is easily read into common 
plotting software for visualization (cf. Figure 4, right).

Very recently, efforts have been made to calculate OPPs directly from the 
MEM-reconstructed SLD [34, 35]. The appeal of this method lies in bypassing 
the cumbersome and potentially error-prone modeling of the PDF. However, it 
requires the assignment of parts of the SLD to the mobile species under inves-
tigation. For materials, in which migrating lithium ions are the only scatterers 
with a negative scattering length, this is trivial: all negative SLD is attributed to 
them. In other cases, one would have to discriminate SLD regions dominated by 
the mobile species from those that are not (during PDF modeling, this happens 
automatically). Unfortunately, software tools to conduct such studies are not yet 
available to the public.

2.4  �cNEB computation

The cNEB calculations were performed with the plane-wave program package 
Vasp [36]. The atomic forces entering the cNEB procedure are calculated analyti-
cally at DFT level. In order to fulfill the Hellmann–Feynman theorem, which is the 
basis of the gradient calculation, the electronic wave functions have to be varia-
tionally optimized. In Vasp, the Bloch functions are expanded as Fourier series of 
plane waves. The expansion order is determined by the largest kinetic energy of a 
plane wave, the energy cutoff Ecut. This parameter therefore uniquely determines 
the variational quality of the wave function. Another parameter that determines 
the number of variational degrees of freedom in the wave function is the number 
of special k points in the irreducible part of the Brillouin zone in reciprocal space. 
It is determined by the procedure of Monkhorst and Pack [37], which employs the 
shrinking factors si as parameters. The reciprocal lattice vectors are subdivided 
into si intersections. The total number of k points is, therefore, s1 × s2 × s3. Both 
parameters, Ecut and si, were converged in preliminary studies for each system. In 
most plane-wave methods, the core electrons are replaced by effective core poten-
tials. Vasp employs the projector-augmented wave (PAW) method [38] to project 
the local pseudo wave-functions from the plane-wave Bloch functions. This 
approach has been shown to provide higher numerical stability and improved 
accuracy for calculations of structural properties compared to norm-conserving 
and ultra-soft pseudopotentials. For all our calculations, the solid-state standard 
density-functional PBE [39, 40] has been used.

Figure 5 shows the principle of a NEB calculation. It starts with linear inter-
polation of the initial and final structure. This is simply achieved using the 
Cartesian or fractional coordinates of all atoms in the selected unit cell. If the 
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linear interpolation leads to unphysically short interatomic distances or if a non-
linear migration pathway is expected, it is possible to introduce an intermediate 
structure (as was done in the example shown in Figure 6). During pathway opti-
mization, modified atomic forces are used. The negative energy gradient iV−∇

�
 of 

each image is decomposed into the tangential force iF�
�

 and the radial contribu-
tion iV ⊥∇

�
 with respect to the arc connecting to the previous and the next image:

i i iV V F⊥∇ = ∇ + �
� � �

During convergence of the images to the MEP, only the radial component is 
applied.

The calculations of migration pathways are usually performed with supercell 
models to reduce artifacts from periodic boundary conditions, such as direct and 
indirect defect–defect interaction, restriction of lattice relaxation, and enforced 
concerted movement of ions. Depending on the system under investigation, all 

Fig. 5: Schematic contour plot of a potential-energy hypersurface (left; black points: initial and 
final structure) and construction of modified atomic forces (right; white points: interpolating 
images, black arrow: negative energy gradient, red arrow: tangential force, blue arrow: radial 
contribution, gray: connection to previous [i–1] and next [i + 1] image).

Fig. 6: Example of a lithium migration path in 3R-LixTiS2. In the initial structure (left), one 
octahedral lithium site is vacant (white sphere). In the intermediate state (center), the lithium 
ion (red sphere) occupies a tetrahedral interstitial site. In the final structure (right), the ion has 
migrated to the formerly vacant octahedral site. Adapted with permission from [41]. © 2015 
American Chemical Society.
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possible defect models have to be explicitly considered via supercells with atomic 
vacancies or displacements, e.g. to model Frenkel defects. A possible situation 
with an empty lithium site in 3R-LixTiS2 as well as an associated migration event 
is illustrated by Figure 6. The principle shape of the potential curve along the 
corresponding reaction coordinate is shown in Figure 7. Herein, the occupation 
of the tetrahedral site is assumed to lead to a local energy minimum. Since initial 
and final structures are equivalent in this case, the MEP is symmetric and con-
tains two maxima, which are represented by the cNEB images (black points) with 
highest energy. The distances between the images of highest energy are no longer 
forced to be identical. The cNEB procedure removes the spring forces between 
the image with the highest energy and its two neighbor images. In this way, the 
geometry of the image with highest energy is relaxed with fewer restrictions and 
can come closer to the transition structure.

In principle, the cNEB procedure should find the MEP between any two given 
structures. However, since it is a gradient-based method, it is possible that the 
“MEP” obtained with NEB or cNEB corresponds to a local energy minimum or 
even a path over a higher-order saddle point. For this reason, it is necessary to 
perform full force-constant–matrix calculations for the cNEB maximum-energy 
images in order to verify their true TS nature. The lattice-vibration calculation 
can then also be used to calculate activation enthalpies and free activation ener-
gies by employing statistical thermodynamics. Also, the frequency prefactor is 
calculated in this way. Altogether, this allows for a (static) estimate of lithium-ion 
diffusivity.

Fig. 7: Schematic drawing of the minimum-energy path connecting the initial and final struc-
tures of Fig. 6. Three images are assumed between initial and intermediate structure for the 
cNEB calculation. The energy difference between the second image (signifying the TS) and the 
initial structure is an approximation to the migration activation energy Em. The MEP connecting 
intermediate and final state is assumed to mirror the first part.
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3  �Examples of application

3.1  �Ultra-slow and 3D: γ-LiAlO2

We successfully applied the methods described above to different crystal-
line ternary lithium chalcogenides set apart by their conduction characteris-
tics (fast/slow) and the connectivity of migration paths (1D/2D/3D). γ-LiAlO2 
(tetragonal, P41212/P43212; see Figure 8) is an example of an ultra-slow three-
dimensional lithium conductor – densely packed and lacking structural 
cation defects. It was investigated in different forms with a variety of tech-
niques, such as NMR and impedance/conductivity spectroscopy on micro- to 
nanocrystalline [42] or amorphous powders [43], as well as on differently ori-
ented single crystals [44–46]. Even dynamic mechanical analysis (DMA) has 
been performed [47].

Our own work on this system started with a computational study of intersti-
tial lithium-diffusion pathways [48]. The cNEB method implemented in the Vasp 
program was applied. The PEHS was calculated at PBE level using a plane-wave 
basis set defined by an energy cutoff of 400 eV. The supercell models contained 
one empty lithium lattice site, either by simply removing a litihium atom or by 
generating a Lii + VLi Frenkel defect pair. The calculated migration pathways cor-
respond to a lithium ion moving from a regular lattice site to the empty lattice 
site (VLi) via an interstitial position. The calculated migration barriers for a jump 
process to the nearest empty lithium site were 0.65 eV (assuming a lithium point-
defect) and 0.64–0.93 eV (assuming a Frenkel defect with decreasing Lii–VLi dis-
tance). Migration to second- and third-nearest VLi sites have much larger barriers 
and are therefore less likely.

Fig. 8: Crystal structure of γ-LiAlO2 with view approximately along [100] (left) and [001] (right); 
ions with arbitrary radii, unit cell in black. Reprinted with permission from [30]. © 2016 Ameri-
can Chemical Society.
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Our experimental investigations began with the evaluation of two single-crys-
tal neutron diffraction datasets previously acquired at 25 and 770 °C [49]. Although 
the high-temperature data were of low quality, maps of the MEM-reconstructed 
SLD hinted at strongly curved lithium pathways connecting adjacent positions. In 
an ensuing multi-method study [30], we assessed the state of research on lithium 
diffusion in different crystalline forms of γ-LiAlO2 and added tracer-diffusion 
experiments, conductivity spectroscopy, and high-temperature powder neutron 
diffraction. PVA and VDP (see Figure 2) identified the aforementioned pathway 
as the most probable one; PDF analysis confirmed this assumption (see Figure 4). 
Evaluation of the OPP revealed a migration barrier as high as 0.72(5) eV.3 The dif-
ference between this and activation energies determined by other methods (1.0−1.2 
eV) is too small for the formation of, e.g. Frenkel defects from an ideal domain, 
meaning that defects (twin boundaries, impurity dopants, etc.) must be abundant.

3.2  �Fast and 2D: LixTiS2

In dependence on temperature, lithium content, and synthesis conditions, 
lithium titanium disulfides exist in two layered polytypes – differing in the 
anion stacking sequence (1T and 3R, see Figure 9) – and a cubic modification  
(c-LixTiS2). With x < 1, the former are fast two-dimensional ion conductors within 
their structurally defective lithium layers. Ion diffusion in 1T-LixTiS2 (trigonal, 
P3̅m1), a paradigmatic battery material, was extensively investigated using con-
ductivity and, in particular, NMR spectroscopy [50–54] supported by computa-
tion [55, 56].

We succeeded in the reliable synthesis and structural characterization of fully 
lithiated (albeit not pure) 3R-LiTiS2 (trigonal, R3̅m), which computation showed to 
be metastable with respect to the 1T polytype by 4 kJ mol−1 at 0 K [57]. Pure phases 
with lower lithium content (x = 0.7, 0.9) were shown to reversibly transform between 
1T and 3R in the range of 400–600 °C [58]. This transformation, also recently inves-
tigated via high-temperature NMR spectroscopy [59], is governed by a complex 
interplay of polarization and electron correlation that stabilize the 1T polytype at 
low temperature with respect to the electrostatically preferred 3R form.

Because our powder neutron-diffraction study on Li0.7TiS2 and Li0.9TiS2 
required high temperature to thermally activate lithium-ion diffusion, it dealt 
with the 3R phases exclusively [41]. We used PDF/OPP analysis to test three prob-
able paths: two along different directions strictly in plane and one including 

3 Errors in PDFs and OPPs are estimated using a Monte-Carlo method varying the displacement-
relevant parameters [29].
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connecting tetrahedral voids above/below the lithium-containing layer (see 
Figure 6). A path only slightly bent out of the lithium plane showed to be pre-
ferred with migration barriers of 0.5 and 1.5 eV for x = 0.7 and 0.9, respectively (see 
Figure 10; MEM-reconstructed SLD maps verified the soundness of the PDF/OPP 
analysis). Computation corroborated the preference found, but the calculated 
energy barrier was significantly lower than the experimental one (0.46 eV at 0 K) 
at higher lithium content. We attributed this discrepancy to the different nature of 
the methods (space-time average vs. individual-ion perspective).

It should be noted that the erstwhile assumption of a pathway preference as 
a function of the lithium content was based on preliminary results and proved 
untenable [60]. For our research, 3R-LixTiS2 was a case of serendipity: similar 
materials in scope yielded unevaluable diffractograms (2H-LixNbS2) – caused by 
severe preferred orientation and concomitant selective line broadening due to 
stacking faults – or proved to be unstable (1T-LixCrS2).

3.3  �Very fast and quasi-1D: ramsdellite-like Li2Ti3O7

The structure of ramsdellite-like Li2Ti3O7 (or, with Z = 1, Li2.286Ti3.429O8; orthorhom-
bic, Pnma) can be described as a stuffed derivative of the VO2 type or a defect-

Fig. 9: Crystal structures of 1T- (left) and 3R-LiTiS2 (right); ions with arbitrary radii, unit cell in 
black. Reprinted with permission from [41]. © 2015 American Chemical Society.
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homeotype of Li0.5TiO2. As such, it consists of a framework mainly made up of TiO6 
octahedra and spacious channels along b (in Pnma standard setting), in which 
interstitial disordered lithium ions reside (see Figure 11). Because of the presence 
of numerous voids, very fast conduction along b occurs. However, along the other 
crystallographic directions, ion movement is still considerable, making rams
dellite-like Li2Ti3O7 a quasi–one-dimensional (or strongly anisotropic) conductor. 
This has been shown and rationalized by a variety of diffraction, conductivity 
spectroscopy [62], and NMR studies [63]. Nonetheless, the lithium distribution 

Fig. 10: Section of the lithium OPP for Li0.7TiS2 (left) and Li0.9TiS2 (right) at 600 °C in view of 
(010). Absolute Cartesian coordinates e1 along line between next neighboring lithium positions 
and e2 along c axis. Red, gray, and white areas: low, high, and infinitely high OPP, respectively; 
green line: preferred diffusion pathway. Adapted with permission from [41]. © 2015 American 
Chemical Society.

Fig. 11: Crystal structure of ramsdellite-like Li2Ti3O7 in general view (left) and channel detail 
(right). View approximately along b, ions with arbitrary radii, unit cell in black. Reprinted from 
[61], © 2016, with permission from Elsevier.
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between interstitial channels and framework has been a matter of debate for a 
long time.

We acquired neutron powder diffractograms of the material at high tempera-
ture, which confirmed the recently favored formulation as [Li2□5]i[(Ti3□0.5)O7]f (□: 
vacancy, i: interstitial, f: framework) [61]. Because of the severe disorder of the 
interstitial lithium ions and the onset of thermally activated decomposition into 
the stable phases Li4Ti5O12 and rutile, we were unable to conduct a rigorous PDF/
OPP analysis. Investigation of the MEM-reconstructed SLD (cf. Figure 3), however, 
showed the channels with their energetically very similar cation positions to be 
the major pathway for lithium diffusion. PVA and VDP (see Figure 1) identified an 
additional minor path through framework cation defects as accountable for the 
less efficient conduction along the other crystallographic directions.

Our computational study on ramsdellite-like Li2Ti3O7 considered a large 
number of possible lithium/titanium distributions over interstitial and frame-
work sites in a Li16Ti24O56 supercell in order to mimic the complex structure [64]. 
The two most stable models were selected for cNEB calculations of lithium migra-
tion. Various pathways to empty nearest and next-nearest neighbor sites both 
along the channels and in directions perpendicular to the channels were con-
sidered. The calculated migration barriers showed large variations with respect 
to the lithium hopping-distance. The ranges, 0.20–0.92 eV along the channels 
and 0.30–0.85 eV in perpendicular directions, would indicate three-dimensional 
diffusion in contrast to the experimental results discussed above. However, the 
energy variation of initial and final structures of a migration process is much 
smaller along the channels than in the other directions. We therefore concluded 
that, although short-range lithium migration is possible between the channels, 
the lithium ions are trapped in energetically favored sites in this case. This effect 
is less pronounced along the channels, which leads to quasi-1D diffusion.

3.4  �Strongly disordered: LiBi3S5

With LiBi3S5 (monoclinic, C2/m), we were able to selectively synthesize and char-
acterize an announced, but hitherto elusive compound [65]. The material had 
been deemed a potentially fast one-dimensional lithium-ion conductor; to our 
dismay, NMR studies showed it to be moderate at best. In this case, we used 
neutron powder diffraction as a tool for structure elucidation: X-ray diffracto-
grams had already revealed the structure to be a bismuth-disordered variant of 
the monoclinic AgBi3S5 type, but only neutron radiation could show the concomi-
tant disorder in the lithium sublattice. Employing PVA and VDP as standalone 
methods, we identified viable pathways along the channels in b direction includ-
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ing tetrahedral voids for idealized configurations (see Figure 12). This revealed 
the reason for the worse-than-expected diffusivity: disordered bismuth ions clog 
the pathways and effectively prohibit long-range transport. For an experimental 
substantiation, neutron diffraction at high temperatures would be the method of 
choice – if one could overcome the challenges posed by cation disorder and low 
symmetry (reflection overlap).

4  �Conclusion
Diffusion pathways and activation energies in crystalline lithium-ion conductors 
can be formidably investigated using neutron diffraction as experimental and 
cNEB calculations as computational methods. We have established a versatile set 
of evaluation approaches that can be adapted to data quality and necessary infor-
mation output: topological analyses (PVA and VDP), examination of MEM-recon-
structed SLD maps, and PDF/OPP modeling. Ideally, these are complemented 
by additional techniques, such as NMR relaxometry, conductivity/impedance 

Fig. 12: Detail of ordered model of LiBi3S5 with migration path. Blue: bismuth, green: lithium, 
yellow: sulfide ions, red: elementary voids and channels; ions with arbitrary radii, unit cell in 
black. Reprinted from [65], © 2016, with permission from Elsevier.
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spectroscopy, tracer-diffusion experiments, or MD computations to verify scien-
tific soundness.

We used these methods systematically to characterize lithium diffusion in 
paradigmatic ternary lithium oxides and sulfides with different conduction 
properties (fast/slow) and dimensionalities (one-/two-/three-dimensional), like  
γ-LiAlO2, 1T- and 3R-LixTiS2, ramsdellite-like Li2Ti3O7, and LiBi3S5. We feel that, 
with our research, we have only just scratched the surface and that more sub-
stance classes and evaluation methods (e.g. the inspection of the bond-valence 
sum mismatch) are waiting for scientists to dig deeper.
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